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By considering the boundary-value problem of the motion of a viscous fluid in a 
channel with porous walls, an approximate description of the distribution of 
axial velocity and static pressure is obtained. 

In solving many important problems it is necessary to know how the pressure and velocity 
vary along a channel with porous walls and a dead end. Turbulent flow in channels with out- 
flow varying along the length is particularly complex and little studied. 

In [i] the equation of motion of a fluid with a variable flow rate along the path [2] 

W 2 d x  _ _  , ~ W ( W - - O ) d G  + ~  0 dp q- ~ W d W  + Wd~ ~ . - - -  - -  = 
9 G 2 D 

is used to determine the longitudinal pressure gradient in the presence of outflow (inflow). 

The solution of this equation requires data on the variation of B, e, and I along the 
porous channel. 

Experimental studies of the structure of turbulent flow in a circular pipe established 
the nature of the variation of the momentum flux factor ~ for both a constant [3] and a vari- 
able [4] rate of outflow of gas. 

For a nonuniform rate of outflow 8 at first increases to 8 ffi 1.042 for x/D = 4, de- 
creases to 8 = 1,02, and then remains constant almost to the dead end where it increases 
sharply. Thus, 8 differs only slightly from unity. 

It is very difficult to establish the functional dependence of the friction factor 
on other factors. 

In recent theoretical papers attempts have been made to use the idea of a mixing length, 
refined near the wall by means of a damping factor [5], for all types of turbulent boundary 
layers. 

It has been proposed to calculate the friction factor in porous channels with a uniform 
distribution by an expression in which the friction factor is a linear function of the coef- 
ficient of outflow 

). = ~o + 5.54 v_.._~w. 
W 

Reliable experimental d a t a  are n e e d e d  t o  confirm this expression. 

If we take 8 ffi I, | ffi cW (0 ~ c ~ i), and the known value of G = (~Da/4)Wp, the equation 
of motion of a fluid with a variable flow rate takes the form 

_ _ _  W 2 d x  
dp + ( 2 - - c )  W d W +  % . . . . .  O. (1)  
9 2 D 

the radial velocity at the wall can be determined from the discharge On the one hand, 
formula 

On the other hand, 

Vw = ~ !  ] / 2 p / 9 ( 1 %  ~-)" (2 )  
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D d W  
Vw . . . . . . . .  (3) 

4 dx 

Using ~ = Efhol/F k = 4r we have from Eqs. (2) and (3) 

p = (dW/dx) z (I ~- ;) /2~.  (4) 

Differentiating (4), substituting into (i), and making some transformations, we obtain 

o. 
dx z dx 1 ' ~ W d x  f 1@ 

To determine the friction factor we start from the equation 

~' = io -I-  M v . -  w . 
W 

If we substitute 8c + M - N and introduce the dimensionless variables X = x/L and U = 

dU 8e~Zo ( L )Zb,  z = o .  
d X  1 + ;  

u(o) = ] ;  u(1) = o, (5) 

WlWo, 
d~U dU 16#(2--N/8) ( L V 
dX = d X  ; 1 ~ ~, D , I 

Finally, we obtain the boundary-value problem 

dzU dU dU 
�9 a t "  - - ~ - b U  z = O ;  

dX  2 d X  d X  

where 

a - -  1 --~o . (2--N,8);  b--  1 .... 

The coefficient N must be determined from the experimental data. 
find an exact analytical solution suitable for analysis. 

We solve this equation by the power series method proposed in [6]. 
solution in the form 

U =  2Cn(I--X)" 

It is impossible to 

We seek a series 

(6) 

Differentiating this twice we obtain 

dU dzU -- ~-~ C,,_z(1--X)"; 
= E  d ._ t (1- -X)n;  ~ ~ (7) 

0 0 

Cn+l = -- (,'7, - i -  1) Cn+fi C'n+2 = (n -;-1) (n 2) Cn+2. 

We note that the multiplication of the infinite power series ~An(l--X)" and 
0 

B n ( 1 - - X )  n gives an infinite power series ~Cr,( I - -X)  , whose coefficients can convenl- 
0 0 

e n t l y  be found by the  Cauchy fo rmulas  

C~ = A,,B o - )  A, , - tBt  . . .  A tBn- i  =- AoBn. 

In accord with the notation introduced 

dU d2U E I t . .  t ~._d (1 --  x) ~, 
dX d X  z = ~ (8) 

where 
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e v  
U ~ -  --- [C.d.+, l  (1 - -  x )  ~. 

0 

(9) 

H e r e  

[CnC,+tl = C o C , + i - - C l C ~ n - -  - . .  + C n -  2C 2+ 

u 2 = u u  = ~ [c.C.l (1 - - x ) t  
0 

Cn-I Ct; (io) 

(ll) 

Similarly, 

[C~C,d = CoC, q -  CiC,-t  -F . .  �9 + C,- iCi  - -  C,C o. (12) 

Substituting series (8), ~9), and (ii) into Eq. {5) and equating coefficients of identi- 
cal powers in theparentheses (i --X), we obtain the following recurrence relation: 

[ t ,+ i~n+ ~ + a [CnCn+t] + b [CnCn] =0.  (13 )  

To calculate with this equation it is necessary to have two initial conditions, e.g., 
Co and Cx, which in general must be obtained from the boundary conditions. From the second 
condition U(1) = 0, we obtain one coefficient Co - O; the second condition is expressed in 

the form of the equation ~ C k= I, which makes Cx potentially known also. 
0 

Thus, the problem is reduced to the solution of the following system of algebraic equa- 
tions: 

[Cn+l Cn+2] + a [C,~Cn+t] + b [CnCn] = 0 

~ C k = 1; C o = O. 
0 

(n = O, I, 2 . . . .  ); 
(14) 

With Co - 0 and a fixed n the recurrence relation (13) for n = 0, i, 2, ... gives each 
time an equation with one unknown which is expressed in terms of Cx. Limiting ourselves to 
a certain number of terms in series (6) we use (13) to determine the coefficients C2, C3, 

C~, ..., C k in terms of Ca. Substituting these into the equation ~C k= l, we find C~ 

and then Ca, C3, . . ., C k. 

Specifically for n - 0 

Ct c2 -b aCoC, + bCoCo = 0 

or, using (7) and Co = 0, --2CZC2 - 0. 

For X = i (dead end) we can write another supplementary condition d2U/dX = = 0. Then 
CI # 0, and consequently C2 - Ca = 0, which enables us to express all the C k in terms of C: 

Fig. 

/W 

t . . . .  ~_~ 

I. Schematic diagram of porous 
section. 
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Fig. 2. Variation of relative axial veloc- 
ity along a porous pipe: for ef = 0.5: I) 
L/D = 58; 2) 43; 3) 22; for Ef = 0.1156: 
4) L/D = 58; 5) 43; 6) 22. 

and the coefficients a and b which enter the equation. Limiting ourselves to a certain num- 
ber of terms in series (6) and repeating the calculation described above, we find Cx and 
then Ca, C3, ..., Ck. 

For n = 3, 

U M [120 (l  - -  X) - -  2Oa (1 X ) a ~  lOb(1 X) 4 ' . . . .  ~ a - ( 1  - -  X)a], (15) 

where M = 1/(120 -- 20a + 10b + aa). 

The coefficient b in (5) can be neglected if the ratio of the length of the pipe to its 
diameter is small. Then we obtain the linear equation 

dzU 
' a U = O .  

dX  z ' 

The solution of this equation which satisfies the boundary conditions is 

U = s~n ! - a (1  -- X)/s in  I - a .  (16) 

A similar solution was obtained by Idel'chlk [7], who showed that Eq. (16) is valid only for 
r < ~/2. This same result can be obtained by the present method by limiting ourselves to 
n = 0 and n = I. In this case the approximate solution of the problem is 

U ~ [6 (1 --- X) - -  a (1 - -  X)a]/(6 - -  a). ( 1 7 )  

This expression does not depend on the coefficient b. 

System (14) can be solved by computer for practically any n. We note that the solution 
converges rather rapidly and within the limits of accuracy of the experiment can be restricted 
to the value of U for n = 3. 

The variation of the dimensionless static pressure can be calculated from the equation 

P = (U')  2 (1 -'- ~ 1 6  (L/D) z e2 
�9 ~ ,  (18) 

where we obtain U' by differentiating (15). 

The results were tested on a hydraulic stand [8] (Fig. i). Perforated pipes 13.8 mm in 
diameter with surface porosities ef = 0.1156 and ef ~ 0.5 were used in the experiments. The 
static pressure along the porous section and the pressure drop at the wall were measured in 
the experiment. The variation of the average axial velocity of water in the porous channel 
was determined from the experimental data. The length of the perforatedsection varied from 
150 to I000 mm. Figure 2 shows the results for pipes with various wall porosities. The 
curves show the dimensionless velocity averaged over the cross section as a function of the 
dimensionless length x/L calculated by Eq. (15). The coefficient N was determined for each 
case as a function of porosity, the hydraulic resistance of the wall, and the relative length 
of the channel. The relation U = i -- X is valid for uniform outflow. 

For the experimental data under consideration, porosities in the range ef = 0.1-0.5, 
and a relative channel length L/D = 15-60 we propose the relation 

N = 12.66-~- 5.6~ s - -  ( 0 . 0 3 2 8 -  0.0577~/) L.D.  
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The approximate method we have described for calculating the flow distribution in a 
porous channel has been tested over a rather wide range of controlling parameters. In all 
cases the experimental data and the calculated relations were in good agreement. 

NOTATION 

x, longitudinal coordinate, m; p, density of medium, kg/m3; p, static pressure at chan- 
nel wall, N/ma; v, local radial velocity, m/sec; Vw, radial velocity at channel wall, m/sec; 
G, mass flow rate, kg/sec; W, local axial velocity, m/sec; Wo, average velocit~ in entrance 
section of porous channel, m/sec;Wm, maximum velocity on channel axis, m/sec;W, average 
velocity in any channel cross section, m/sec; ef, porosity of lateral wall; D, channel diam- 
eter, m; L, length of porous channel, m; Fk, cross-sectional area of channel, m2; Efh^1 
area of holes in channel wall, m2; { = Zfhol/Fk; P, dimensionless pressure, p/(*/=Wo2)0; U, 

dimensionless average axial velocity, U = W/Wo; X, dimensionless coordinate, x/L; U", U', 
derivatives wih respect to dimensionless coordinate; l, friction factor at porous surface; 
lo, friction factor in channel with solid walls; ~, resistance coefficient for outflow through 
side walls of channel; Re, Reynolds number. 
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